作为一种通用技术,人工智能不只有猜你喜欢、让汽车自动驾驶的能力,还能帮助许多领域的科学家们加速科学研究的进程,这就是人工智能科学计算(AI for Science)。
现在已经有许多科学家团队正在用AI帮助解决科学难题。比如在气象领域,AI实现更快更精准的数值天气预报,包括预测强对流天气的短时临近降水情况和揭示大尺度的台风形成和演变规律。在生命科学领域,传统的科研方法面临生物类型实验数据少、计算任务复杂、学科交叉多等挑战,而随着AI应用探索的持续推进,AI已逐渐在药物筛选、药物设计、靶点研究、合成生物学、疾病机理研究等方面实现落地和持续的进步。
AI 为解决科学问题带来新方法的同时,也对AI基础软硬件带来诸多新挑战。毕竟,推动科学进步与开发一个人脸识别算法需要的并不完全是一种能力。
首先,深度学习平台需要具备更加丰富的各类计算表达能力,如高阶自动微分、复数微分、高阶优化器等;其次,科学问题求解需要超大规模的计算,这对深度学习平台与异构超算/智算中心适配及融合优化,神经网络编译器加速和大规模分布式训练提出了新的要求;此外,如何实现人工智能与传统科学计算工具链的协同,也是需要解决的问题。
过去的这几年,百度飞桨团队在这些问题取得了进展。作为国内首个自主研发、功能丰富、开源开放的产业级深度学习平台,飞桨研发了一系列用于科学研究的工具组件,比如赛桨PaddleScience、螺旋桨PaddleHelix、量桨Paddle Quantum等,支持复杂外形障碍物绕流、结构应力应变分析、材料分子模拟等丰富领域算例,广泛支持AI加计算流体力学、生物计算、量子计算等前沿方向的科研探索和产业应用。
对于科学领域大规模计算的需求,飞桨推出了超大规模图学习训练技术PGLBox,是业界首个同时支持复杂算法+超大图+超大离散模型的大规模图学习训练技术,通过显存、内存、SSD三级存储技术和训练框架的性能优化技术,单机即可支持百亿节点、数百亿边的图采样和训练,并可通过多机扩展支持更大规模,目前已经在百度的智能交通、信息推荐、搜索等标杆场景实现落地,大幅提升业务效率和用户体验。
在科研生态方面,百度飞桨已经与高校、科研机构等开展了计算流体力学、分子动力学、动力气象学等方面的范例建设,并形成了一些开放性的、多学科交叉的生态社区,包括飞桨特殊兴趣小组(PPSIG)、共创计划等,与各方一道进行技术联合开发、推广资源共享,生态商机共建。
瞄准 AI for Science 赛道,对百度飞桨来说是 AI 能力的挑战,但一次次技术突破,也是飞桨提升能力的机会。对于整个社会也有重大意义,百度飞桨的一个个技术突破,也让科学家们有了更好的帮手,让技术突破拥有了更多可能性。